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Abstract
In previous work (Skála L and Čı́žek J 1996 J. Phys. A: Math. Gen. 29
L129, 6467), a new method of calculating perturbation energies for one-
dimensional problems based on the linear dependence of the perturbation
wavefunctions on the perturbation energies has been suggested. It is shown
in this letter that this method can be extended to multi-dimensional problems
and the linearity can be used not only at a boundary point but also at an arbitrary
point inside the integration region. Degenerate eigenvalues are also discussed.
The resulting perturbation theory is very simple and can be used at large orders.

PACS numbers: 03.65.−w, 31.15.Md

In this letter, we are interested in the perturbation theory for the bound states of the Schrödinger
equation

Hψ(x) = Eψ(x). (1)

As usual in the perturbation theory, we assume the Hamiltonian, wavefunction and energy in
the form

H = H0 + λH1, (2)

ψ = ψ0 + λψ1 + λ2ψ2 + · · · (3)

and

E = E0 + λE1 + λ2E2 + · · · , (4)

where λ is a perturbation parameter. Using these assumptions in the Schrödinger equation (1),
we get the well-known equations for En and ψn:
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H0ψ0 = E0ψ0 (5)

and

H0ψn +H1ψn−1 =
n∑
i=0

Eiψn−i , n = 1, 2, . . . . (6)

We note that ψ0 denotes the unperturbed wavefunction of the Hamiltonian H0. Depending on
the problem in question, it can be the ground-state or the excited-state wavefunction.

Despite the well-known formulations that can be found in any textbook on quantum
mechanics, there is one property of the perturbation theory which has been noticed [1, 2]
and used [3–8] only recently. It has been shown in the one-dimensional case [1, 2] that the
value of the perturbation wavefunction ψn(x) at an arbitrarily chosen point x depends on the
perturbation energy En linearly. This linear dependence makes it possible to determine the
exact perturbation energies from the values of ψn(x) for two arbitrarily chosen perturbation
energies En by simple calculation [1, 2]. In this way, the functions ψn which are not
quadratically integrable are used to calculate the exact perturbation energies En and, in the
next step, the corresponding exact perturbation functions ψn.

This method has a few advantages. In contrast to the usual formulation of the perturbation
theory, this method based on the computation of ψn from equation (6) for a given energy En
can easily be programmed for arbitrarily large orders of the perturbation theory. For example,
200 perturbation energies necessary for finding the large-order behaviour ofEn were calculated
in [7]. Further, by solving equation (6) numerically, both the discrete and continuous parts of
the energy spectrum are taken into account and the perturbation energies En can be calculated
even in cases where only a few bound states exist. The linear dependence of ψn(x) on the
energy En makes it possible to avoid the usual shooting method and reduce the computational
time substantially. Finally, we note that only the wavefunctions are needed in this method and
no integrals have to be calculated.

The aim of this letter can be formulated as follows. First, it is shown that this method can be
extended to multi-dimensional problems. Further, it is shown that the point x mentioned above
need not be just a point sufficiently distant from the potential minimum as assumed in [1, 2],
but can be an arbitrary point inside the integration region obeying conditions discussed below.
This is advantageous from the point of view of the numerical stability of the method. Finally,
the method is extended to degenerate energies. As examples, the perturbation energies for two
coupled harmonic oscillators and two coupled Morse oscillators are calculated.

First we discuss a non-degenerate multi-dimensional case. We assume that the perturbation
functions ψi and perturbation energies Ei are already computed for i = 0, . . . , n − 1. The
solution of equation (6) can be written as

ψn(En, x) = EnF(x)− fn−1(x), n = 1, 2, . . . , (7)

where

F(x) = (H0 − E0)
−1ψ0(x) (8)

and

fn−1(x) = (H0 − E0)
−1

(
H1ψn−1(x)−

n−1∑
i=1

Eiψn−i (x)
)
. (9)

The general solution of equation (6) can contain also a term cnψ0(x) in the right-hand side of
equation (7), where cn is an arbitrary constant. For the sake of simplicity, we assume cn = 0
here. As seen from equation (7), the perturbation function ψn(En, x) depends on the energy
En which is not yet known and the point x = [x1, . . . , xN ] in N -dimensional space.
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Equations (7)–(9) show that the structure of the perturbation functions is very simple. It
follows from equation (7) that the function ψn(En, x) is a linear function of the energy En.
Further, it is seen that F(x) is a function independent of n. We note also that, except for the
case where En is the exact perturbation energy, ψn(En, x) is not quadratically integrable and
has no physical meaning.

The functions F(x) and fn−1(x) are calculated from equations (8) and (9) numerically
with the conditions F(xb) = 0 and fn−1(xb) = 0, where xb are points in the boundary region
sufficiently distant from the potential minimum. The same boundary conditions are used for
the function ψ0(x).

We note that the function F(x) which would diverge in the exact calculation has large
but finite values in numerical calculations. The functions ψn(En, x) for the exact perturbation
energyEn are quadratically integrable. Therefore, we can assume that they obey the condition

|ψn(En, x)| � |F(x)|. (10)

It follows from equations (7) and (10) that the functions ψn(En, x) also satisfy the condition

|ψn(En, x)| � |fn−1(x)|. (11)

Therefore, we can neglectψn(En, x) in equation (7). The formula for the energyEn then reads

En = fn−1(x)

F (x)
. (12)

This equation can be used at an arbitrarily chosen point x inside the integration region—except
for the points where the conditions (10) and (11) are not obeyed.

If the perturbation energy En is calculated from equation (12), the corresponding
perturbation function ψn(En, x) can be found from equations (7)–(9).

Now we clarify the principle of our method in more detail. In order to eliminate the
divergence in calculating F(x) from equation (8), we replace the Hamiltonian H0 by H0 + iδ,
where δ is a small real number. Then, the function F(x) can be written as

F(x) = 1

iδ
ψ0(x). (13)

In the first order n = 1, we expand the function in the parentheses in equation (9) into the
eigenfunctions of H0:

H1ψ0(x) = b0ψ0(x) +
∑
j

′
bjϕj (x). (14)

Here, ϕj are the eigenfunctions ofH0 which obey the equationH0ϕj = εjϕj and are different
from ψ0; the bj are constants. Now, applying the operator (H0 − E0)

−1 to equation (14) we
obtain

f0(x) = 1

iδ
b0ψ0(x) +

∑
j

′ 1

εj + iδ − E0
bjϕj (x), (15)

where εj �= E0. By substituting equations (13) and (15) into (7) we get

ψ1(E1, x) = E1 − b0

iδ
ψ0(x)−

∑
j

′ 1

εj + iδ − E0
bjϕj (x). (16)

In order to obtain a quadratically integrable function ψ1, the energy E1 must equal b0. For
δ → 0, the constant b0 can be calculated from equations (13) and (15):

E1 = b0 = f0(x)

F (x)
. (17)
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This result is an independent proof of equation (12) for n = 1. By substituting E1 = b0 into
equation (16) it can also be shown that the function ψ1 is orthogonal to ψ0. In a similar way,
the correctness of equation (12) and the orthogonality of the functions ψn to ψ0 can be proven
at all higher orders.

In numerical calculations, the sum in equation (15) is much smaller in absolute value than
the first term but it cannot be neglected. Therefore, the energyE1 computed from the equation

E1(x0) = f0(x0)

F (x0)
(18)

depends slightly on the choice of the point x0. Calculating ψ1 from equation (7) for n = 1 we
get the function

ψ1(E1, x) = f0(x0)F (x)− f0(x)F (x0)

F (x0)
. (19)

This shows that the function ψ1 calculated in this way equals zero at the point x0:

ψ1(E1, x0) = 0. (20)

Therefore, the usual orthogonality condition 〈ψ0|ψ1〉 = 0 is not fulfilled in numerical
calculations. It can easily be shown that this result can be extended to all functions ψn.
As shown in [6], such functions can have in some cases a simpler form than the usual
perturbation functions. If necessary, the functions ψn can be made orthogonal to ψ0 by the
usual orthogonalization procedure.

It is seen from equation (13) that equation (10) is fulfilled everywhere inside the integration
region except for the points whereψ0(x) = 0. Therefore, the point x used in the calculation of
the energy (12) should be sufficiently distant from the points where the function ψ0(x) equals
zero.

The standard formula of the non-degenerate perturbation theory can be derived in the
following way. It is seen from equations (8), (9) and (12) that

En(H0 − E0)
−1ψ0 = (H0 − E0)

−1

(
H1ψn−1 −

n−1∑
i=1

Eiψn−i

)
. (21)

Multiplying this equation by (H0−E0) and supposing that the functionsψn obey the conditions
〈ψ0|ψn〉 = δ0,n, n = 0, 1, . . . , we get after simple calculation the well-known formula

En = 〈ψ0|H1|ψn−1〉. (22)

This confirms the correctness of equation (12).
Our method is a remarkable example of calculating the perturbation energies En from the

values of the functions F(x) and fn−1(x), which are not quadratically integrable. Comparing
with the standard formulation of the perturbation theory, large-order calculations are simple in
our method. To determine E1, the values of F(x) and f0(x) at just one point x are sufficient.
To determine En for n = 2, 3, . . ., only the value of fn−1(x) at the point x is to be computed.
Therefore, this method of calculating En is much faster than the usual shooting method.

We note that the zero-order function ψ0 has to be found only for the state for which the
perturbation corrections are calculated. In contrast to the case for usual perturbation theory,
other zero-order energies and wavefunctions are not needed in the calculation.

Now we discuss the first-order perturbation correction to a degenerate eigenvalue E0.
Assuming that the energyE0 is d0-times degenerate and the corresponding zero-order function
ψ0 in equation (6) is replaced by the linear combination

d0∑
j=1

a
(j)

0 ψ
(j)

0 (23)
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it follows from equation (6) that equation (7) can be generalized as

ψ1(E1, x) = E1

d0∑
j=1

a
(j)

0 F (j)(x)−
d0∑
j=1

a
(j)

0 f
(j)

0 (x), (24)

where

F (j)(x) = (H0 − E0)
−1ψ

(j)

0 (x) (25)

and

f
(j)

0 (x) = (H0 − E0)
−1H1ψ

(j)

0 (x). (26)

It is seen from equation (24) that ψ1(E1, x) depends on E1 linearly as in the non-degenerate
case. Therefore, by analogy with the non-degenerate case, we can derive the formula for the
perturbation energy E1:

E1 =
∑d0

j=1 a
(j)

0 f
(j)

0 (x)∑d0
j=1 a

(j)

0 F (j)(x)
. (27)

Here, f (j)0 (x) and F (j)(x) are known, E1 and a(j)0 are to be found. To find E1 and a(j)0 we
exploit the fact that the energy E1 is a constant and use equation (27) at d0 different points
x = x1, . . . , xd0 inside the integration region. Then, the solution of the equations∑d0

j=1 a
(j)

0 f
(j)

0 (x1)∑d0
j=1 a

(j)

0 F (j)(x1)
=

∑d0
j=1 a

(j)

0 f
(j)

0 (x2)∑d0
j=1 a

(j)

0 F (j)(x2)
= · · · =

∑d0
j=1 a

(j)

0 f
(j)

0 (xd0)∑d0
j=1 a

(j)

0 F (j)(xd0)
(28)

yields d0 sets of the coefficients a(j)0 . d0 values of the energy E1 are given by equation (27)
and the corresponding perturbation functions equal

ψ1 =
d0∑
j=1

a
(j)

0 ψ
(j)

0 . (29)

The usual formulation of the first-order degenerate perturbation theory can be derived
from equation (27) as follows. We substitute equations (25) and (26) into (27) and get for a
point x

E1 =
∑d0

j=1 a
(j)

0 (H0 − E0)
−1H1ψ

(j)

0 (x)∑d0
j=1 a

(j)

0 (H0 − E0)−1ψ
(j)

0 (x)
. (30)

Multiplying the numerator and denominator by (H0 − E0) we get

E1 =
∑d0

j=1 a
(j)

0 H1ψ
(j)

0 (x)∑d0
j=1 a

(j)

0 ψ
(j)

0 (x)
(31)

and

E1

d0∑
j=1

a
(j)

0 ψ
(j)

0 (x) =
d0∑
j=1

a
(j)

0 H1ψ
(j)

0 (x). (32)

Further, multiplying this equation from the left side by the complex conjugate functionψ(i)∗
0 (x),

integrating over x and assuming orthonormality of the functions ψ(j)

0 (x), the standard secular
problem is obtained:

d0∑
j=1

(Wij − E1δij )a
(j)

0 = 0, i = 1, . . . , d0, (33)



L172 Letter to the Editor

where

Wij = 〈ψ(i)
0 |H1|ψ(j)

0 〉. (34)

Higher orders of the degenerate perturbation theory can be discussed in the following
way. It is assumed that the energy E0 is d0-times degenerate. In the first-order calculation
described above, d0 functions ψ1 corresponding to d0 values of the energy E1 are obtained. If
the degeneracy is removed only partly, some of the energiesE1 may be equal. For each of these
functionsψ1, we make the second-order calculation and d0 functionsψ2 with the corresponding
energies E2 are obtained. In this way, we continue until the (n− 1)th order is reached. Now
we want to calculate the perturbation energy En and the corresponding perturbation functions
ψn(En, x). By analogy with the first-order calculation we assume

ψn(En, x) = En

d0∑
j=1

a
(j)

0 F (j)(x)−
n−1∑
i=1

d0∑
j=1

a
(j)

i f
(j)

i (x), n = 2, 3, . . . , (35)

where

F (j)(x) = (H0 − E0)
−1ψ

(j)

0 (x), (36)

and

f
(j)

i (x) = (H0 − E0)
−1(δi,n−1H1 − En−i )ψ

(j)

i (x). (37)

These equations yield

En =
∑n−1

i=1

∑d0
j=1 a

(j)

i f
(j)

i (x)∑d0
j=1 a

(j)

0 F (j)(x)
, n = 2, 3, . . . . (38)

Here, a(j)0 is one set of the coefficients calculated from equation (28) and a(j)i for i =
1, . . . , n− 2 are the corresponding coefficients. The coefficients a(j)n−1 are to be found. Then,
the solution of the equations∑n−1

i=1

∑d0
j=1 a

(j)

i f
(j)

i (x1)∑d0
j=1 a

(j)

0 F (j)(x1)
=

∑n−1
i=1

∑d0
j=1 a

(j)

i f
(j)

i (x2)∑d0
j=1 a

(j)

0 F (j)(x2)
= · · · =

∑n−1
i=1

∑d0
j=1 a

(j)

i f
(j)

i (xd0)∑d0
j=1 a

(j)

0 F (j)(xd0)

(39)

at d0 different points yields the coefficients a(j)n−1, j = 1, . . . , d0. The corresponding energy
En is given by equation (38) and the perturbation function equals

ψn =
d0∑
j=1

a
(j)

n−1ψ
(j)

n−1. (40)

This calculation has to be performed for all the sets of the coefficients a(j)0 obtained from
equation (28).

It is seen that our formulation of degenerate perturbation theory is simpler than the usual
formulation [11] and can be used at large orders.

Assuming the normalization of the functions ψ(i)
0 and the orthogonality of the functions

ψ
(j)

k to ψ(i)
0 , k = 1, . . . , n− 1, we obtain from equations (35)–(38)

d0∑
j=1

〈ψ(i)
0 |H1|ψ(j)

n−1〉a(j)n−1 = Ena
(i)
0 , i = 1, . . . , d0. (41)

This equation is a generalization of equation (22) to degenerate case.
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Table 1. Perturbation energies En for the ground state of the Hamiltonian (42). E0 is the exact
zero-order energy.

n En

0 2
1 −0.750 000 000
2 −0.937 500 00
3 −0.023 437 500 0
4 −0.013 305 664 0
5 −0.000 315 348 30
6 −0.013 279 491
7 0.024 044 310 6
8 −0.074 303 068 7
9 0.234 920 366

10 −0.845 542 55
11 3.345 687 31
12 −14.494 654 8
13 68.195 859
14 −346.325 41
15 1 888.182 52
16 −11 000.399 4
17 68 201.932
18 −448 367.10
19 3115 424.0
20 −22 813 412.6

As an example of using our method, we first calculated the perturbation energies for the
ground state of two non-linearly coupled harmonic oscillators [9, 10]:

H = − ∂2

∂x2
1

− ∂2

∂x2
2

+ x2
1 + x2

2 + λ(x2
1x

2
2 − x2

1 − x2
2 ). (42)

To compute ψn from equation (6) in the region x1 ∈ [−11, 11], x2 ∈ [−11, 11], we used
158 × 158, 160 × 160, 162 × 162, 164 × 164 grids of points, assumed that the functions
ψn equal zero at the border of this region and solved the corresponding system of difference
equations in double-precision accuracy in Fortran. To eliminate the effect of the non-zero
steps of the grids, the perturbation energies were extrapolated to an infinitely dense grid by
means of the Richardson extrapolation. The ground-state perturbation energies are shown in
table 1. Only the digits which agree in the calculations for the points x = [0, 0] and [1, 1]
are shown. These results agree also with an independent calculation made by means of the
difference equation method suggested in [10]. The dependence of the results on the choice of
the point x is small.

As a second test, we chose a more difficult problem with only one bound state of the
Hamiltonian H0 where the standard perturbation theory yields the first-order correction E1

only. The perturbation energies were calculated for the ground state of two coupled Morse
oscillators:

H = − ∂2

∂x2
1

− ∂2

∂x2
2

+ (1 − e−x1)2 + (1 − e−x2)2 + λ(1 − e−x1)2(1 − e−x2)2. (43)

The integration region x1 ∈ [−12, 20] and x2 ∈ [−12, 20] was used. The ground-state
perturbation energies are shown in table 2. Only the digits which agree in the calculations for
x = [4, 4] and [5, 6] are shown. The value of E1 = 0.25 was verified by analytic calculation.
The decrease in accuracy of the energies En with increasing n is due to the fact that the



L174 Letter to the Editor

Table 2. Perturbation energies En for the ground state of the Hamiltonian (43). E0 is the exact
zero-order energy.

n En

0 3/2
1 0.250 0000
2 −0.069 635
3 0.039 03
4 −0.036 6
5 0.092 0
6 −0.611
7 6.43
8 −89.2
9 1550

functions ψn spread with increasing n rapidly, and get out of the integration region. These
results show that, in contrast to the case for standard perturbation theory, our method can be
used for calculating higher-order perturbations even in the case of only one zero-order bound
state.

It is obvious from tables 1 and 2 that both perturbation series fail to converge and are
asymptotic series only.

We verified that equations (27) and (28) yield correct numerical results for the
Hamiltonian (42) and d0 = 2, 3. Further results will be published elsewhere.

Summarizing, the method described in this letter is simple and efficient alternative to the
usual formulation of the perturbation theory. It can be used for one-dimensional as well as
multi-dimensional problems and for non-degenerate as well as degenerate eigenvalues. Its
main advantages are easy calculation of the large-order perturbations and the possibility of
finding the perturbation corrections even in cases where only a few zero-order bound states
exist.

The authors would like to thank the GA UK (grant no 166/00), the GA CR (grant
no 202/00/1026), MS (grant no 190-01/206053) of the Czech Republic and NSERC of Canada
(JZ is a NATO Science Fellow) for support.
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[6] Skála L, Čı́žek J and Zamastil J 1999 J. Phys. A: Math. Gen. 32 5715
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